

Alternative Carbon Fibre Precursors

Investigate the feasibility of using alternatives to polyacrylonitrile precursors to manufacture lower impact, high performance carbon fibres

Description

- This project will look to develop alternative precursors to polyacrylonitrile (PAN) for the manufacture of carbon fibre
- This could include the investigation of bio-derived precursors, such as lignin, or lower energy petrochemical alternatives
- It could also look to quantify the effects of the substitution

Background

- Due to their inherent properties (lightweight, durable), carbon fibre is often used to facilitate lower impact use phases, however their production is high energy
- A major contributor to this is the precursor (PAN)
- 90% of carbon fibres are manufactured from petroleum-derived PAN that is polymerised and carbonised

Objectives

- Identify alternatives to PAN, looking to both academia and industry for potential
- Produce, at lab scale initially, carbon fibres using an alternative precursor
- Test and quantify the fibres' performance

Benefits

- High performance, lower impact carbon fibre
- Lower energy solutions could be lower cost
- Bio-based solutions could sequester carbon during use
- Bring carbon fibre manufacture back to UK

Smart Composite Materials

Investigate and develop smart composite materials with multi-functionality to increase

usability

Description

- This project will look to investigate and implement smart multi-functional composite materials
- This could include self-healing materials, smart sensors, and shape memory composites amongst others
- It could also look to develop new applications for multifunctional materials, and to deployment feasibility

Background

- Industry's desire for multifunctional or smart materials is increasing
- At current, materials are predominantly designed and selected for their mechanical performance with little emphasis on secondary material functions
- Their inherent tailorability means they could be designed for multi-functionality

Objectives

- Review the current technology landscape of smart composite materials
- Down-select a multi-functional material for further development
- Develop and demonstrate the technology

Benefits

- Self healing or smart sensing materials could support component life extension, saving cost
- Shape memory composites could facilitate disassembly or reuse

Recycling. Disassembly. Circular materi Reuse.

Reversible Resins

Develop cost effective and scalable manufacturing processes for reversible resins that facilitate easier end of life

Description

- This project will look to identify, develop, and demonstrate reversible resin chemistries that facilitate easier end of life
- This could include resin chemistries that return to their monomer building blocks
- Or 'unzippable' thermoset resins whose crosslinks can be reversed, amongst other technologies

Background

- Whilst thermoplastics can be ground, melted, or reformed, thermosets are not easily reversed once cured
- Current composite reclamation technologies are additional processes, and don't look to the inherent characteristics of the materials
- They are also predominantly focused on reclaiming the higher value fibres

Objectives

- Evaluate the current technology landscape for reversible resins
- Develop, optimise, and potentially scale up a reversible method for a selected resin, and test the output

Benefits

- A matrix chemistry that can be reversed could facilitate reclamation of both polymer resin and fibre without degradation of either
- This could help the composite industry to reduce waste and meet legislation targets

Supply Chain for Bio-based Composites

Support the development of the supply chain for high performance, low cost, sustainably sourced feedstock for bio-based composites

Description

- This project will look into developing the supply chain for bio-based composites
- This could include validation of the mechanical performance of the materials to increase consumer confidence
- It may also look to define what 'sustainably sourced' means, and how certification can be introduced to ensure a sustainable supply chain

Background

- At current, the majority of composite materials are derived from petrochemicals
- These feedstock are highly energy intensive to produce
- Replacing these with bio could reduce a composite's overall impact as they sequester carbon during use
- Although commercialisation exists, it is limited by the immaturity of the supply chain

Objectives

- Define what makes a material 'sustainably sourced'
- Identify potential supply chain routes for feedstock and intermediates
- Validate mechanical performance/impact

Benefits

- Enhanced supply chain validated bio-based materials that are more readily available and therefore at a lower cost
- Potentially lower impact alternative materials for use in composites

Validation of Circular Materials

Investigate, compare, and report the key parameters that quantify the performance of a range of circular materials

Description

- This project will look to quantify the performance of a range of circular materials, increasing user confidence
- Parameters quantified could include mechanical performance, environmental impact, costs, and processing parameters
- Materials tested may include bio-based resins, natural fibres, recyclate etc.

Background

- Industry is becoming increasingly interested in alternatives to traditional, virgin, petroleum-derived materials
- However, uptake is stunted by a lack of understanding of, and confidence in, these materials and their physical and mechanical properties
- Environmental impacts and costs are not always known

Objectives

- Quantify the performance of a range of circular materials for use in composites
- Devise and populate a database to store this information
- Increase awareness of alternative materials

Benefits

- Validated data sets for circular materials, facilitating better-informed decision making
- Increase in the uptake of these materials due to greater user confidence
- Well-linked supply chain -> lower cost

Circularity of Thermoplastic Composites

Identify methods to create thermoplastics (materials and processes) that are more cohesive with the principles of a circular economy

Description

- This project will look to determine ways in which thermoplastics can be made more circular
- This could include derivation of new processing methods or reclamation technologies
- It could also look in to feedstock derivation, such as recyclate or bio
- Self-reinforcing thermoplastics may also be considered

Background

- Thermoplastic composites are commonly regarded as 'more sustainable' than thermosets due to their ability to be melted and reformed
- Current recycling methods involve grinding, resulting in short, unaligned fibres. This could be considered to be downcycling
- Most thermoplastics are derived from petroleum

Objectives

- Develop innovative techniques for processing or reprocessing thermoplastics whilst retaining value
- Assess feedstock and material derivation
- Validate and demonstrate the technology

Benefits

- Retaining the performance of thermoplastics during reclamation gives second uses higher value
- Reduced waste to landfill, saving costs
- Development of the UK supply chain